
Process Info ActiveX Control for Microsoft®
Windows™

Copyright © Magneto Software

All rights reserved

Contents

1 Process Info ActiveX Control Overview ... 3

1.1. Introduction.. 3

1.2. Usage ... 3

1.3. Interface Summary ... 3
1.3.1. _DSKProcessInfo ... 3

1.4 Method Summary ... 4
AboutBox ... 4
EnumProcesses .. 4
EnumApplications.. 4
EnumProcessModules .. 4

2. Methods ... 4

2.1. AboutBox .. 4

2.2. EnumProcesses .. 5

2.3. EnumApplications .. 5

2.4. EnumProcessModules .. 6

2.5. EnumProcessThreads .. 7

2.6. QuerySetPriorityClass ... 8

2.7. QueryTerminateProcess .. 9

3. Examples ... 9

1 Process Info ActiveX Control Overview

1.1. Introduction
The Magneto Software Process Information ActiveX control (skprocessInfo.ocx) allows
developers to monitor and control processes running on the current machine from their 32-Bit or
64-Bit applications.

It is a lightweight and powerful control that allows developers to retrieve some vital process
information in real-time.

Process Information ActiveX control provides the following real-time vital processes
information:

• List of running services, their names, process id’s, details and status
• List of running processes, their names, process id’s and status
• Process properties such as: process id, memory usage, base priority, full path name and

threads information
• List of running applications and their status
• List of modules loaded by process
• Module properties such as full file name, base address, global usage, context usage and full

description and version information.
The control can be used from any Windows-based applications development environment,
including Visual Studio.
It comes with documentation, sample code, and working demo programs.

1.2. Usage
The control retrieves information about:
• Programs that are running
• Processes that are running
• Computer’s Performance

1.3. Interface Summary
1.3.1. _DSKProcessInfo

Specifies a collection of logically grouped methods to retrieve processes/applications/modules
related information.

AboutBox

EnumProcesses

EnumApplications

EnumProcessModules

EnumProcessThreads

QuerySetPriorityClass

QueryTerminateProcess

1.4 Method Summary
AboutBox
Display a dialog box with Skprocessinfo ActiveX control license and version information.

EnumProcesses
Retrieves list of processes that are running on the current machine

EnumApplications
Retrieves list of applications that are running on the current machine

EnumProcessModules
Retrieves list of modules that are used by the application. This list defines the set of files needed
for the module to load and execute as a running process.

EnumProcessThreads
Retrieves list of threads executed by the process.

QuerySetPriorityClass
Sets the priority class for the specified process.

QueryTerminateProcess
Terminates the specified process and all of its threads.

2. Methods

2.1. AboutBox

Summary
Display a dialog box with SKProccessInfo control license and version information.

Syntax
void AboutBox();

Description
This method could be used to display version license information or to register
skproccessInfo.ocx control.

Parameters
None.

Return value:
This function does not return a value.

2.2. EnumProcesses

Summary
Retrieves list of processes that are running on the current machine.

Syntax
void EnumProcesses (VARIANT* pvarProcesses);

Description
The process is assigned a process identifier. Until the process terminates, the process identifier
uniquely identifies the process throughout the system.

Parameters
pvarProcessesis

[out] Pointer to a variant, containing two-dimensional SAFEARRAY. Each element of this
SAFEARRAY is a VARIANT.

pvarProcesses receives a list of all running processes and their properties. The list describes the
processes residing in the system address space when a snapshot was taken.

The SAFEARRAY dimension definitions are as follows:

[1st dimension] index of the process in the array

[2nd dimension] describes process properties.

1. Identifier of the process.

2. Identifier of the process that created the process being examined.

3. Memory usage, in bytes.

4. Number of execution threads started by the process

5. Base priority of any threads created by this process

6. Pointer to a null-terminated string that specifies the name of the executable file for the
process. The file name does not include the path.

Return value:
This function does not return a value.

2.3. EnumApplications

Summary
Retrieves list of applications that are running on the current machine

Syntax
void EnumApplications (VARIANT* pvarApplications);

Description
Retrieves list of applications that are running on the current machine

Parameters
pvarApplications

[out]Pointer to a variant, containing two-dimensional SAFEARRAY. Each element of this
SAFEARRAY is a VARIANT.

pvarApplications receives a list of all running applications and their properties. The list
describes the applications residing in the system address space when a snapshot was taken.

The SAFEARRAY dimension definitions are as follows:

[1st dimension] index of the application in the array

[2nd dimension] describes application properties.

1. Identifier of the process.
2. Identifier of the thread. This identifier is compatible with the thread identifier returned

by the CreateProcess function.
3. Process handle.
4. Handle to the icon.
5. Application status.
6. Application name.

Return value:
This function does not return a value.

2.4. EnumProcessModules

Summary
Retrieves list of modules that are used by the application. This list defines the set of files needed
for the module to load and execute as a running process.

Syntax
void EnumProcessModules (long lProcId,
 VARIANT* pvarProcModules);

Description
Retrieves list of modules that are used by the application. This list defines the set of files needed
for the module to load and execute as a running process.

Parameters
lProcId
[in] Identifier of the process returned by EnumProcesses method.
pvarProcModules

[out]Pointer to a variant, containing two-dimensional SAFEARRAY. Each element of this
SAFEARRAY is a VARIANT.

pvarProcModules receives a list of all modules in the specified process when a snapshot was
taken.

The SAFEARRAY dimension definitions are as follows:

[1st dimension] index of the module in the array

[2nd dimension] describes module properties.

1. Module identifier in the context of the owning process. It is not a handle.
2. Identifier of the process to be examined.
3. Global usage count on the module.
4. Module usage count in the context of the owning process.
5. Base address of the module in the context of the owning process.
6. Size of the module, in bytes.
7. Handle to the module in the context of the owning process.
8. Pointer to a null-terminated string that specifies the module name.
9. Pointer to a null-terminated string that specifies the module path.

Return value:
This function does not return a value.

2.5. EnumProcessThreads

Summary
Retrieves list of threads executed by the process.

Syntax
void EnumProcessThreads (long lProcId,
 VARIANT* pvarProcThreads);

Description
Retrieves list of threads executed by the process.

Parameters
lProcId
[in] Identifier of the process returned by EnumProcesses method.
pvarProcThreads
[out]Pointer to a variant, containing two-dimensional SAFEARRAY. Each element of this
SAFEARRAY is a VARIANT.

pvarProcThreads receives a list of all threads associated with process.

The SAFEARRAY dimension definitions are as follows:

[1st dimension] index of the thread in the array

[2nd dimension] describes thread properties.

1. Thread identifier. This identifier is compatible with the thread identifier returned by the
CreateProcess function.

2. Identifier of the process that created the thread.
3. Initial priority level assigned to a thread.
4. Change in the priority level of a thread. This value is a signed delta from the base

priority level assigned to the thread
5. Number of references to the thread. A thread exists as long as its usage count is nonzero.

As soon as its usage count becomes zero, a thread terminates.

Return value:
This function does not return a value.

2.6. QuerySetPriorityClass

Summary
Sets the priority class for the specified process.

Syntax
long QuerySetPriorityClass(long lProcId, long lPriority, short bSet);

Description
By default, the priority class of a process is NORMAL_PRIORITY_CLASS. Processes that
monitor the system, such as screen savers or applications that periodically update a display,
should use IDLE_PRIORITY_CLASS. This prevents the threads of this process, which do not
have high priority, from interfering with higher priority threads. Use
HIGH_PRIORITY_CLASS with care. If a thread runs at the highest priority level for extended
periods, other threads in the system will not get processor time. If several threads are set at high
priority at the same time, the threads lose their effectiveness. The high-priority class should be
reserved for threads that must respond to time-critical events. If your application performs one
task that requires the high-priority class while the rest of its tasks are normal priority, use
QuerySetPriorityClass to raise the priority class of the application temporarily; then reduce it
after the time-critical task has been completed. You should almost never use
REALTIME_PRIORITY_CLASS, because this interrupts system threads that manage mouse
input, keyboard input, and background disk flushing. This class can be appropriate for
applications that “talk” directly to hardware or that perform brief tasks that should have limited
interruptions

Parameters
lProcId
[in] Handle to the process

lPriority

[in] Specifies the priority class for the process. This parameter can be one of the predefined
values:

• IDLE_PRIORITY_CLASS
• NORMAL_PRIORITY_CLASS
• HIGH_PRIORITY_CLASS
• REALTIME_PRIORITY_CLASS

bSet
[in] 1- sets the priority,
0- tests if priority can be changed

Return value:
If the function succeeds, the return value is zero.

2.7. QueryTerminateProcess

Summary
Terminates the specified process and all of its threads.

Syntax
long QueryTerminateProcess(

long lProcId,
short bTerminate);
Terminates the specified process and all of its threads.

Parameters
lProcId
[in] Handle to the process

bTerminate
[in] 1- termintes the specified process,

0- checks if process can be terminated.

Return value:
If the function succeeds, the return value is zero

3. Examples
skprocessInfo ActiveX Control comes with complete documentation, VC++/VB/ASP sample code,
and working demo programs distributed during install time.
Demo programs below were written to use SkprocessInfo control to retrieve process related
information.
Figure 1 Enumerate Applications Demo

Figure 2 Enumerate Processes Demo

Figure 3 Enumerate Modules Demo

	1 Process Info ActiveX Control Overview
	1.1. Introduction
	1.2. Usage
	1.3. Interface Summary
	1.3.1. _DSKProcessInfo
	AboutBox
	EnumProcesses
	EnumApplications
	EnumProcessModules
	EnumProcessThreads
	QuerySetPriorityClass
	QueryTerminateProcess

	1.4 Method Summary
	AboutBox
	EnumProcesses
	EnumApplications
	EnumProcessModules
	EnumProcessThreads
	QuerySetPriorityClass
	QueryTerminateProcess

	2. Methods
	2.1. AboutBox
	Summary
	Syntax
	Description
	Parameters
	Return value:

	2.2. EnumProcesses
	Summary
	Syntax
	Description
	Parameters
	Return value:

	2.3. EnumApplications
	Summary
	Syntax
	Description
	Parameters
	Return value:

	2.4. EnumProcessModules
	Summary
	Syntax
	Description
	Parameters

	2.5. EnumProcessThreads
	Summary
	Syntax
	Description
	Parameters
	1. Thread identifier. This identifier is compatible with the thread identifier returned by the CreateProcess function.
	Return value:

	2.6. QuerySetPriorityClass
	Summary
	Syntax
	Description
	Parameters
	Return value:

	2.7. QueryTerminateProcess
	Summary
	Syntax
	Parameters
	Return value:

	3. Examples

