Process Info ActiveX Control for Microsoft®
Windows™

Copyright © Magneto Software
All rights reserved

Contents

1 Process INfo ACtiVEX CONTIOL OVEIVIEWcooeeeeeeeeee e,
O O 101 1 oo [o3 £ o] PO SRR PR
R U L= To [TSRO T PO PR UUPTPPRRPRTOP
IR TR 101 0=T o = (ot 0] 4o SRR

1.3.1. DSKPIOCESSINTO....cciiiiiiiieieitie ettt ns
Y oo T ST U T = 1 2SS
A D OUEB DX .ttt ettt ettt ettt nnnnnnnn
ot 10 L 00T =T
ENUMAPPIICALIONS. ...ttt e st nb et e sreebe st e sne e b
ENUMPTOCESSIMOUUIES ... e e e e ettt e e e et e e e e et e e e e e e e e eeeeeeens

2. MEENOAS . ..
2. L. A OUI B OX oo e et e e e e e e ————ae e e e r e ———
2.2. o 110 10T
20 T 01041 o] o] [Tor= LA o] SR
2.4, ENUMPTOCESSMOAUIESo
2.5, ENUMPTOCESSTRIEAUS ...t e ettt e e e e e e et e e e e e e e en e eeeeeens
2.6, QUEKYSELPIIONTYCIASS .. .eivieiie ettt ettt st be e sbe e sneers
2.7. QUEIYTEIrMINALEPTOCESS ...c.vvcveiieeieeiesteeste ettt e e s ra et e eseesreeaeeneesneeaeeneenrs

X =10 1]] =1 USSR

1 Process Info ActiveX Control Overview

1.1. Introduction

The Magneto Software Process Information ActiveX control (skprocessinfo.ocx) allows
developers to monitor and control processes running on the current machine from their 32-Bit or
64-Bit applications.

It is a lightweight and powerful control that allows developers to retrieve some vital process
information in real-time.

Process Information ActiveX control provides the following real-time vital processes
information:

e List of running services, their names, process id’s, details and status

e List of running processes, their names, process id’s and status

e Process properties such as: process id, memory usage, base priority, full path name and
threads information

e List of running applications and their status

e List of modules loaded by process

e Module properties such as full file name, base address, global usage, context usage and full
description and version information.

The control can be used from any Windows-based applications development environment,

including Visual Studio.

It comes with documentation, sample code, and working demo programs.

1.2. Usage
The control retrieves information about:

e Programs that are running
e Processes that are running
e Computer’s Performance

1.3. Interface Summary

1.3.1. _DSKProcessinfo
Specifies a collection of logically grouped methods to retrieve processes/applications/modules
related information.

AboutBox

EnumProcesses

EnumApplications

EnumProcessModules

EnumProcessThreads

QuerySetPriorityClass

QueryTerminateProcess

1.4 Method Summary
AboutBox
Display a dialog box with Skprocessinfo ActiveX control license and version information.

EnumProcesses
Retrieves list of processes that are running on the current machine

EnumApplications
Retrieves list of applications that are running on the current machine

EnumProcessModules
Retrieves list of modules that are used by the application. This list defines the set of files needed
for the module to load and execute as a running process.

EnumProcessThreads
Retrieves list of threads executed by the process.

QuerySetPriorityClass
Sets the priority class for the specified process.

QueryTerminateProcess
Terminates the specified process and all of its threads.

Methods
2.1. AboutBox

Summary
Display a dialog box with SKProccessInfo control license and version information.

Syntax
void AboutBox();

Description

This method could be used to display version license information or to register
skproccessinfo.ocx control.

Parameters
None.

Return value:
This function does not return a value.

2.2. EnumProcesses

Summary
Retrieves list of processes that are running on the current machine.

Syntax
void EnumProcesses (VARIANT* pvarProcesses);

Description

The process is assigned a process identifier. Until the process terminates, the process identifier
uniquely identifies the process throughout the system.

Parameters
pvarProcessesis

[out] Pointer to a variant, containing two-dimensional SAFEARRAY. Each element of this
SAFEARRAY is a VARIANT.

pvarProcesses receives a list of all running processes and their properties. The list describes the
processes residing in the system address space when a snapshot was taken.

The SAFEARRAY dimension definitions are as follows:

[1% dimension] index of the process in the array

[2" dimension] describes process properties.

Identifier of the process.

Identifier of the process that created the process being examined.
Memory usage, in bytes.

Number of execution threads started by the process

Base priority of any threads created by this process

o g~ w e

Pointer to a null-terminated string that specifies the name of the executable file for the
process. The file name does not include the path.

Return value:
This function does not return a value.

2.3. EnumApplications

Summary
Retrieves list of applications that are running on the current machine

Syntax
void EnumApplications (VARIANT* pvarApplications);

Description
Retrieves list of applications that are running on the current machine

Parameters
pvarApplications

[out JPointer to a variant, containing two-dimensional SAFEARRAY. Each element of this
SAFEARRAY is a VARIANT.

pvarApplications receives a list of all running applications and their properties. The list
describes the applications residing in the system address space when a snapshot was taken.

The SAFEARRAY dimension definitions are as follows:
[1% dimension] index of the application in the array
[2" dimension] describes application properties.

1. Identifier of the process.

Identifier of the thread. This identifier is compatible with the thread identifier returned
by the CreateProcess function.

Process handle.

Handle to the icon.

Application status.

Application name.

no

ook w

Return value:
This function does not return a value.

2.4. EnumProcessModules

Summary

Retrieves list of modules that are used by the application. This list defines the set of files needed
for the module to load and execute as a running process.

Syntax

void EnumProcessModules (long IProcld,
VARIANT* pvarProcModules);

Description

Retrieves list of modules that are used by the application. This list defines the set of files needed
for the module to load and execute as a running process.

Parameters

IProcld

[in] Identifier of the process returned by EnumProcesses method.
pvarProcModules

[out JPointer to a variant, containing two-dimensional SAFEARRAY. Each element of this
SAFEARRAY is a VARIANT.

pvarProcModules receives a list of all modules in the specified process when a snapshot was
taken.

The SAFEARRAY dimension definitions are as follows:
[1% dimension] index of the module in the array
[2" dimension] describes module properties.

Module identifier in the context of the owning process. It is not a handle.
Identifier of the process to be examined.

Global usage count on the module.

Module usage count in the context of the owning process.

Base address of the module in the context of the owning process.

Size of the module, in bytes.

Handle to the module in the context of the owning process.

Pointer to a null-terminated string that specifies the module name.
Pointer to a null-terminated string that specifies the module path.

©CoNoA~wWNE

Return value:
This function does not return a value.

2.5. EnumProcessThreads

Summary
Retrieves list of threads executed by the process.

Syntax

void EnumProcessThreads (long IProcld,
VARIANT* pvarProcThreads);

Description

Retrieves list of threads executed by the process.

Parameters

IProcld

[in] Identifier of the process returned by EnumProcesses method.

pvarProcThreads

[out JPointer to a variant, containing two-dimensional SAFEARRAY. Each element of this
SAFEARRAY is a VARIANT.

pvarProcThreads receives a list of all threads associated with process.
The SAFEARRAY dimension definitions are as follows:
[1% dimension] index of the thread in the array

[2" dimension] describes thread properties.

1. Thread identifier. This identifier is compatible with the thread identifier returned by the
CreateProcess function.

Identifier of the process that created the thread.

Initial priority level assigned to a thread.

4. Change in the priority level of a thread. This value is a signed delta from the base
priority level assigned to the thread

5. Number of references to the thread. A thread exists as long as its usage count is nonzero.

As soon as its usage count becomes zero, a thread terminates.

w N

Return value:
This function does not return a value.

2.6. QuerySetPriorityClass

Summary
Sets the priority class for the specified process.

Syntax
long QuerySetPriorityClass(long IProcld, long IPriority, short bSet);

Description

By default, the priority class of a process is NORMAL_PRIORITY_CLASS. Processes that
monitor the system, such as screen savers or applications that periodically update a display,
should use IDLE_PRIORITY_CLASS. This prevents the threads of this process, which do not
have high priority, from interfering with higher priority threads. Use
HIGH_PRIORITY_CLASS with care. If a thread runs at the highest priority level for extended
periods, other threads in the system will not get processor time. If several threads are set at high
priority at the same time, the threads lose their effectiveness. The high-priority class should be
reserved for threads that must respond to time-critical events. If your application performs one
task that requires the high-priority class while the rest of its tasks are normal priority, use
QuerySetPriorityClass to raise the priority class of the application temporarily; then reduce it
after the time-critical task has been completed. You should almost never use
REALTIME_PRIORITY_CLASS, because this interrupts system threads that manage mouse
input, keyboard input, and background disk flushing. This class can be appropriate for
applications that “talk” directly to hardware or that perform brief tasks that should have limited
interruptions

Parameters

IProcld
[in] Handle to the process

IPriority

[in] Specifies the priority class for the process. This parameter can be one of the predefined
values:

e IDLE_PRIORITY_CLASS

e NORMAL_PRIORITY_CLASS

e HIGH_PRIORITY_CLASS

e REALTIME_PRIORITY_CLASS
bSet

[in] 1- sets the priority,
0- tests if priority can be changed

Return value:
If the function succeeds, the return value is zero.

2.7. QueryTerminateProcess

Summary
Terminates the specified process and all of its threads.

Syntax
long QueryTerminateProcess(
long IProcld,

short bTerminate);
Terminates the specified process and all of its threads.

Parameters

IProcld
[in] Handle to the process

bTerminate
[in] 1- termintes the specified process,
0- checks if process can be terminated.

Return value:
If the function succeeds, the return value is zero

3. Examples

skprocessinfo ActiveX Control comes with complete documentation, VC++/VB/ASP sample code,
and working demo programs distributed during install time.

Demo programs below were written to use Skprocessinfo control to retrieve process related
information.

Figure 1 Enumerate Applications Demo

&Enumerate Applications Demo

Stark [Refresh Automaticallé Clear Results

Cloze

Bunning Applications:

Procezz [0 Threadld Hwnd [con Statusz M ame

Ox000000F9 000000004 0=00040204 Ox050C022E 0=00000000 Enumerate Applications Demo
Ox0000007E 0:00000053 0=00040148 0<011303BF 000000000 Exploring - Debug

0x00000173 0x000001712 000070274 0=00010256E8 000000000 proccesinfo.doc - Microsoft Wiore
0x000001 20 0=0000012C 0x0007102C4 0x000702C3 000000000 EnurneratedpplicationzDenno - b
Ox000000CE Ox0000004E Ox000ECNEG OxO011501F5 O0x00000000 Features - Microsaft Internet Exp
000000007 00000003 Ox00010148 Ox0001 0147 000000000 Inbox - Microzoft Outlaok
Ox000000FF 0x00000052 0=000101BE Ox0010019F Ox00000000 D:AwIRMT S psterm32hemd. exe
(0000071 22 0:0000004E O002B0536 0x004710433 000000000 YWindows MT Task Manager

Figure 2 Enumerate Processes Demo

&Enumerate Processes Demo
Surnmary:
Start | Kill Process | Procsssss "
[Refresh Automatically Threads: 251 Cloge
Proceszes: Process Modules:
Image Mame | FID | Base Pri | Threads | ﬂ DAWIMMT S Spsten32ikaskmar. exe
mozhield, exe 39 OxdZ2000 17 DSWIMMT AS pstem32hatdIl. dl
fvconsol exe 199 Dwa3000 2 DoAWIMMT Sepstemd2\KERMELIZ.dI
Wehzoary exe 202 49000 3 D\WlNNT\S}JSlEI‘I‘I32\.GD|32d"
nddeagnt. exe 771 D000 1 DoAWIMMT hepstem32WUSER 32 dI
| 118 wl98000 1 LAWIMMT bepstem32WADNWAPI 32 dil
E#pIDIELBHE D:4WINMT \systen325RPCRT 4.l
MDM EXE 47 e163000 4 D:8wIMNT aysterm 32\ COMCTL32.
PuisTray. se 223 (x30000 3 DAWINNT S pstem 324/ DMDEG
05 ExE 232 [x5b000 2 DM IMM T spstem22hSHELL 32 dll
ddhelp.exe 23 Ow52000 3 D:vwANMT bapstern 3285 HL AP I
OUTLOOK.EXE 209 [wB13000 10 D:MwAMMT Saystem32imavert. di
MAFISP32 EXE 241 0126000 7 DoAWIMMT A Spstem32i MY DESK 32 DLL
crd. exe 255 0=33000 1 O:5Program FileshMetwaork Szsociabesiy
wAMWORD EXE 275 Qwb21000] OSWIMMT Saystem3ZWERSION A
MSDEW EXE am OW7I7000 q DANWINNT spstem324 232 Il
290 0159000 3 D:MProgram FileshMetwork Azsociatesis
EnumerateProc. . 244 (47000 1 -

Figure 3 Enumerate Modules Demo

& Enumerate Applications Demo

E
Summan;, ——————————————
Clear Results
Processes: 34

Loaded Modules: 325

™ Refresh Automatically Cloge
Loaded kodules:
MAEWEMT.OLL SHELL32.dI rpcite. dil
SHLwAAPL Il PRI
Pz T ran. exe COMCTLIZ.DLL ritlanman. dil
mzwert.dil METAFIZ2.dI HETLIO.dIl
FERMEL3Z.dIl HETRAP.dI METUIT.dIl
ADMWAPIE2 Il SAMLIE Il TEMVICEE. BXE
JSER3Z.dI MYDESK32.DLL urnprprgr.dil
GOl3zdl Wbk dll eventlog.d
RFCRT4.dl mzgina. dil dhcpozye.dil
uzereny. dil rpcits1. dil wzock 32 dl
KN i

todule ntdll.dll Cetails:

Proceszes that uze ntdll.dll:

Module |d: 0«7 7FE0000

Global zage; -1

Baze Address: 0«7 FIE0000

Baze Size: 385024

Hiodule: Ox7FHE0000

Path: D:swAMMT S petem32sntdll dll

Process [d: 20 [0x14]
Process [d: 34 [Ox22]
Process [d: 40 [0x28]
Procesz [d: 43 [Ox2b]
Process [d: B8 [Oxd44)
Process [d: 80 [Ox50]

	1 Process Info ActiveX Control Overview
	1.1. Introduction
	1.2. Usage
	1.3. Interface Summary
	1.3.1. _DSKProcessInfo
	AboutBox
	EnumProcesses
	EnumApplications
	EnumProcessModules
	EnumProcessThreads
	QuerySetPriorityClass
	QueryTerminateProcess

	1.4 Method Summary
	AboutBox
	EnumProcesses
	EnumApplications
	EnumProcessModules
	EnumProcessThreads
	QuerySetPriorityClass
	QueryTerminateProcess

	2. Methods
	2.1. AboutBox
	Summary
	Syntax
	Description
	Parameters
	Return value:

	2.2. EnumProcesses
	Summary
	Syntax
	Description
	Parameters
	Return value:

	2.3. EnumApplications
	Summary
	Syntax
	Description
	Parameters
	Return value:

	2.4. EnumProcessModules
	Summary
	Syntax
	Description
	Parameters

	2.5. EnumProcessThreads
	Summary
	Syntax
	Description
	Parameters
	1. Thread identifier. This identifier is compatible with the thread identifier returned by the CreateProcess function.
	Return value:

	2.6. QuerySetPriorityClass
	Summary
	Syntax
	Description
	Parameters
	Return value:

	2.7. QueryTerminateProcess
	Summary
	Syntax
	Parameters
	Return value:

	3. Examples

